bienvenidos
   
 
  el universo


en el universo pueden haber mas de billones de galaxias o a lo mejor infinito en cada galaxia hay millones de sistemas solares  y en cada sistema estelar  pueden  que cientos de planetas hayan se piensa que hace tiempo en marte habia vida y puede ser verdad.el planeta mercurio marte.com .El universo es inmenso o a lo mejor hasta es infinito no sabemos nada si hay otro planeta con vida pero hay mas porque este no es el unico planeta  con vida.El sistema solar es muy grande con muchos planetas con muchos satelites y con muchas curiosidades y con un sol pequeño.Este  sol no es muy grande ,es mas grande que todos los planetas pero desde la Tierra se ve muy pequeño y tambien nuestra atmosfera tiene un monton de cosas,todos los planetas giran alrededor del sol,Júpiter es el planeta mas grande de todos y no es un planeta gaseoso cualquiera  es uno un poco mas anormal hae un monton de millones de años se suonia que Jupiter iba ha ser una estrella pero ubo un fallo grave y se formo un planeta enorme y gaseoso,es enorme porque iba a ser una esterlla tiene una gran mancha roja que lleva un monton de tiempo es unalarga y poderosa tormenta que lleva mas de un siglo por lo menos en formacion es tres veces mas grande  que la Tierra ,una estrella tiene duracion empieza siendo una estrella de solamente del tamaño de la Tierra hasta alcanzar un monton de tamño y su final puede ser apagandose  o explotando una supernova casi siempre puede formarse  en un agujero negro  o vuelve a empezar desde el principio,se spera que el fin del sol va a ser dentro de unos 5.000.000.000 de años por lo menos.Nuestro satelite esta a unos 400 mil kilometros por aí.         

El Sistema Solar es un sistema planetario de la galaxia Vía Láctea que se encuentra en uno de los brazos de ésta, conocido como el Brazo de Orión..Bueno ya sabemos lo que es el sistema solar pues vamos en ello.

Está formado por una única estrella llamada Sol, que da nombre a este Sistema, más ocho planetas que orbitan alrededor de la estrella: Mercurio, Venus, la Tierra, Marte, Júpiter, Saturno, Urano y Neptuno; más un conjunto de otros cuerpos menores: planetas enanos (Plutón, Eris, Makemake, Haumea y Ceres), asteroides, satélites naturales, cometas... así como el espacio interplanetario comprendido entre ellos.Los planetas y los asteroides orbitan alrededor del Sol, en la misma dirección siguiendo órbitas elípticas en sentido antihorario si se observa desde encima del polo norte del Sol. El plano aproximado en el que giran todos estos se denomina eclíptica.
Sol. Una estrella de tipo espectral G2 que contiene más del 99% de la masa del sistema. Con un diámetro de 1.400.000 km, se compone, de un 75% de hidrógeno, un 20% de helio y el 5% de oxígeno, carbono, hierro y otros elementos. Planetas. Divididos en planetas interiores (también llamados terrestres o telúricos) y planetas exteriores o gigantes. Entre estos últimos Júpiter y Saturno se denominan gigantes gaseosos mientras que Urano y Neptuno suelen nombrarse como gigantes helados. Todos los planetas gigantes tienen a su alrededor anillos. En el año 2006, una convención de astronomía en Europa declaró a Plutón como planeta enano porque no reúne las características necesarias para ser llamado planeta. Planetas enanos. Esta nueva categoría inferior a planeta la creó la Unión Astronómica Internacional en agosto de 2006. Se trata de cuerpos cuya masa les permite tener forma esférica, pero no es la suficiente para haber atraído o expulsado a todos los cuerpos a su alrededor. Cuerpos como Plutón (hasta 2006 considerado noveno planeta del Sistema Solar), Ceres, Makemake, Eris y Haumea están dentro de esta categoría. Satélites. Cuerpos mayores orbitando los planetas, algunos de gran tamaño, como la Luna, en la Tierra, Ganímedes, en Júpiter o Titán, en Saturno. Asteroides. Cuerpos menores concentrados mayoritariamente en el cinturón de asteroides entre las órbitas de Marte y Júpiter, y otra más allá de Neptuno. Su escasa masa no les permite tener forma regular. Objetos del cinturón de Kuiper. Objetos helados exteriores en órbitas estables, los mayores de los cuales serían Sedna y Quaoar. Cometas. Objetos helados pequeños provenientes de la Nube de Oort. El espacio interplanetario en torno al Sol contiene material disperso proveniente de la evaporación de cometas y del escape de material proveniente de los diferentes cuerpos masivos. El polvo interplanetario (especie de polvo interestelar) está compuesto de partículas microscópicas sólidas. El gas interplanetario es un tenue flujo de gas y partículas cargadas formando un plasma que es expulsado por el Sol en el viento solar. El límite exterior del Sistema Solar se define a través de la región de interacción entre el viento solar y el medio interestelar originado de la interacción con otras estrellas. La región de interacción entre ambos vientos se denomina heliopausa y determina los límites de influencia del Sol. La heliopausa puede encontrarse a unas 100 UA (15.000 millones de kilómetros del Sol). Los diferentes sistemas planetarios observados alrededor de otras estrellas parecen marcadamente diferentes al Sistema Solar, si bien existen problemas observacionales para detectar la presencia de planetas de baja masa en otras estrellas. Por lo tanto, no parece posible determinar hasta qué punto el Sistema Solar es característico o atípico entre los sistemas planetarios del Universo. [editar]Estructura del Sistema Solar Arriba a la izquierda: 1) Sistema Solar interior: desde el Sol hasta el Cinturón de asteroides. 2) A la derecha: Sistema Solar exterior: desde Júpiter hasta el Cinturón de Kuiper. 3) Abajo a la derecha: la órbita del planeta menor Sedna en comparación con la imagen de la izquierda, la Nube de Oort, límite exterior del Sistema Solar. Las órbitas de los planetas mayores se encuentran ordenadas a distancias del Sol crecientes de modo que la distancia de cada planeta es aproximadamente el doble que la del planeta inmediatamente anterior. Esta relación viene expresada matemáticamente a través de la ley de Titius-Bode, una fórmula que resume la posición de los semiejes mayores de los planetas en Unidades Astronómicas. En su forma más simple se escribe: donde = 0, 1, 2, 4, 8, 16, 32, 64, 128. (Aunque puede llegar a ser complicada) En esta formulación la órbita de Mercurio se corresponde con (k=0) y semieje mayor 0,4 UA, y la órbita de Marte (k=4) se encuentra en 1,6 UA. En realidad las órbitas se encuentran en 0,38 y 1,52 UA.Ceres, el mayor asteroide, se encuentra en la posición k=8. Esta ley no se ajusta a todos los planetas (Neptuno está mucho más cerca de lo que se predice por esta ley). Por el momento no hay ninguna explicación de la ley de Titius-Bode y muchos científicos consideran que se trata tan sólo de una coincidencia. [editar]La dimensión astronómica de las distancias en el espacio Para tener una noción de la dimensión astronómica de las distancias en el espacio, es interesante hacer un modelo a escala que permita tener una percepción más clara del mismo. Imagínese un modelo reducido en el que el Sol esté representado por una pelota de fútbol (de 220 mm de diámetro). A esa escala, la Tierra estaría a 23,6 m de distancia y sería una esfera con apenas 2 mm de diámetro (la Luna estaría a unos 5 cm de la tierra y tendría un diámetro de unos 0,5 mm) . Júpiter y Saturno serían bolitas con cerca de 2 cm de diámetro, a 123 y a 226 m del Sol respectivamente. Plutón estaría a 931 m del Sol, con cerca de 0,3 mm de diámetro. En cuanto la estrella más próxima (Próxima Centauri) estaría a 6.332 km del Sol, y la estrella Sirio a 13.150 km. Si se tardase 1 h y cuarto en ir de la Tierra a la Luna (a unos 257.000 km/h), se tardaría unas 3 semanas (terrestres) en ir de la Tierra al Sol, unos 3 meses en ir a Júpiter, 7 meses a Saturno y unos 2 años y medio en llegar a Plutón y dejar nuestro Sistema Solar. A partir de ahí, a esa velocidad, tendríamos que esperar unos 17.600 años hasta llegar a la estrella más próxima, y 35.000 años hasta llegar a Sirio. Una escala comparativa más exacta puede ser si comparamos el Sol con un disco compacto de 12 cm de diámetro. A esta escala, la Tierra tendría poco más de medio milímetro de diámetro (0,55 mm). El Sol estaría a 6,44 metros. El diámetro de la estrella más grande del Universo conocido, VY Canis Majoris, sería de 264 metros (imaginemos esa enorme estrella de casi tres manzanos de casas de tamaño comparado con nuestra estrella de 12 cm). La órbita externa de Eris se alejaría a 625.48 metros del sol. Allí nos espera un gran vacío hasta la estrella más cercana ,Proxima Centauri, a 1645,6 Km de distancia. A partir de allí las distancias galácticas exceden el tamaño de la Tierra (aún hablando en la misma escala). Con nuestro Sol del tamaño de un Disco Compacto, el centro de la galaxia estaría a casi 11 millones de kilómetros y el diámetro de la Via Láctea sería de casi 39 millones de kilómetros. Un enorme vacío nos espera porque la galaxia Andrómeda estaría a 1028 millones de kilómetros, casi la distancia al Sol de Saturno. [editar]Objetos principales del Sistema Solar Sistema Solar Planetas y enanos Sol - Mercurio - Venus - Tierra - Marte - Ceres - Júpiter - Saturno - Urano - Neptuno - Plutón - Haumea -Makemake - Eris Satélite natural Terrestre - Marcianas - Asteroidales - Jovianas - Saturnianas - Uranianas - Neptunianas - Plutonianas - Haumeanas - Eridiana 12 Planetas y planetoides . Propuesta del año 2006 de reconocer 12 planetas, no aceptada por la IAU. El Sol. Planetas con corteza sólida. Planetas de composición gaseosa. [editar]Estrella central El Sol es la estrella del sistema planetario en el que se encuentra la Tierra; por tanto, es la más cercana a la Tierra y el astro con mayor brillo aparente. Su presencia o su ausencia en el cielo determinan, respectivamente, el día y la noche. La energía radiada por el Sol es aprovechada por los seres fotosintéticos, que constituyen la base de la cadena trófica, siendo así la principal fuente de energía de la vida. También aporta la energía que mantiene en funcionamiento los procesos climáticos. El Sol es una estrella que se encuentra en la fase denominada secuencia principal, con un tipo espectral G2, que se formó hace unos 5000 millones de años y permanecerá en la secuencia principal aproximadamente otros 5000 millones de años. El Sol, junto con la Tierra y todos los cuerpos celestes que orbitan a su alrededor, forman el Sistema Solar. A pesar de ser una estrella mediana, es la única cuya forma se puede apreciar a simple vista, con un diámetro angular de 32' 35" de arco en el perihelio y 31' 31" en el afelio, lo que da un diámetro medio de 32' 03". Por una extraña coincidencia, la combinación de tamaños y distancias del Sol y la Luna respecto de la tierra son tales que se ven, aproximadamente, con el mismo tamaño aparente en el cielo. Esto permite una amplia gama de eclipses solares distintos (totales, anulares o parciales). [editar]Planetas El 24 de agosto de 2006, en Praga, en la XXVI Asamblea General la Unión Astronómica Internacional (UAI), se excluyó a Plutón como planeta del Sistema Solar. Tras una larga controversia sobre esta resolución, se tomó la decisión por unanimidad. Con esto se reconoce el error de haber otorgado la categoría de planeta a Plutón en 1930, año de su descubrimiento. Desde ese día el Sistema Solar queda compuesto por 8 planetas. Los 8 planetas que integran el Sistema Solar, de acuerdo con su cercanía al Sol, son: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno. Y estos planetas son astros que giran de manera circular formando órbitas alrededor del Sol, tienen suficiente masa para que su gravedad supere las fuerzas del cuerpo rígido, de manera que asuman una forma en equilibrio hidrostático (prácticamente esférica) y han limpiado la vecindad de su órbita de planetesimales. A Saturno, Júpiter, Urano y Neptuno los científicos los han denominado planetas gaseosos por contener en sus atmósferas gases como el helio, el hidrógeno y el metano, sin saber a ciencia cierta la estructura de su superficie. [editar]Características principales de los planetas del Sistema SolarEstructura del Sistema Solar Arriba a la izquierda: 1) Sistema Solar interior: desde el Sol hasta el Cinturón de asteroides. 2) A la derecha: Sistema Solar exterior: desde Júpiter hasta el Cinturón de Kuiper. 3) Abajo a la derecha: la órbita del planeta menor Sedna en comparación con la imagen de la izquierda, la Nube de Oort, límite exterior del Sistema Solar. Las órbitas de los planetas mayores se encuentran ordenadas a distancias del Sol crecientes de modo que la distancia de cada planeta es aproximadamente el doble que la del planeta inmediatamente anterior. Esta relación viene expresada matemáticamente a través de la ley de Titius-Bode, una fórmula que resume la posición de los semiejes mayores de los planetas en Unidades Astronómicas. En su forma más simple se escribe: donde = 0, 1, 2, 4, 8, 16, 32, 64, 128. (Aunque puede llegar a ser complicada) En esta formulación la órbita de Mercurio se corresponde con (k=0) y semieje mayor 0,4 UA, y la órbita de Marte (k=4) se encuentra en 1,6 UA. En realidad las órbitas se encuentran en 0,38 y 1,52 UA.Ceres, el mayor asteroide, se encuentra en la posición k=8. Esta ley no se ajusta a todos los planetas (Neptuno está mucho más cerca de lo que se predice por esta ley). Por el momento no hay ninguna explicación de la ley de Titius-Bode y muchos científicos consideran que se trata tan sólo de una coincidencia. [editar]La dimensión astronómica de las distancias en el espacio Para tener una noción de la dimensión astronómica de las distancias en el espacio, es interesante hacer un modelo a escala que permita tener una percepción más clara del mismo. Imagínese un modelo reducido en el que el Sol esté representado por una pelota de fútbol (de 220 mm de diámetro). A esa escala, la Tierra estaría a 23,6 m de distancia y sería una esfera con apenas 2 mm de diámetro (la Luna estaría a unos 5 cm de la tierra y tendría un diámetro de unos 0,5 mm) . Júpiter y Saturno serían bolitas con cerca de 2 cm de diámetro, a 123 y a 226 m del Sol respectivamente. Plutón estaría a 931 m del Sol, con cerca de 0,3 mm de diámetro. En cuanto la estrella más próxima (Próxima Centauri) estaría a 6.332 km del Sol, y la estrella Sirio a 13.150 km. Si se tardase 1 h y cuarto en ir de la Tierra a la Luna (a unos 257.000 km/h), se tardaría unas 3 semanas (terrestres) en ir de la Tierra al Sol, unos 3 meses en ir a Júpiter, 7 meses a Saturno y unos 2 años y medio en llegar a Plutón y dejar nuestro Sistema Solar. A partir de ahí, a esa velocidad, tendríamos que esperar unos 17.600 años hasta llegar a la estrella más próxima, y 35.000 años hasta llegar a Sirio. Una escala comparativa más exacta puede ser si comparamos el Sol con un disco compacto de 12 cm de diámetro. A esta escala, la Tierra tendría poco más de medio milímetro de diámetro (0,55 mm). El Sol estaría a 6,44 metros. El diámetro de la estrella más grande del Universo conocido, VY Canis Majoris, sería de 264 metros (imaginemos esa enorme estrella de casi tres manzanos de casas de tamaño comparado con nuestra estrella de 12 cm). La órbita externa de Eris se alejaría a 625.48 metros del sol. Allí nos espera un gran vacío hasta la estrella más cercana ,Proxima Centauri, a 1645,6 Km de distancia. A partir de allí las distancias galácticas exceden el tamaño de la Tierra (aún hablando en la misma escala). Con nuestro Sol del tamaño de un Disco Compacto, el centro de la galaxia estaría a casi 11 millones de kilómetros y el diámetro de la Via Láctea sería de casi 39 millones de kilómetros. Un enorme vacío nos espera porque la galaxia Andrómeda estaría a 1028 millones de kilómetros, casi la distancia al Sol de Saturno. [editar]Objetos principales del Sistema Solar Sistema Solar Planetas y enanos Sol - Mercurio - Venus - Tierra - Marte - Ceres - Júpiter - Saturno - Urano - Neptuno - Plutón - Haumea -Makemake - Eris Satélite natural Terrestre - Marcianas - Asteroidales - Jovianas - Saturnianas - Uranianas - Neptunianas - Plutonianas - Haumeanas - Eridiana 12 Planetas y planetoides . Propuesta del año 2006 de reconocer 12 planetas, no aceptada por la IAU. El Sol. Planetas con corteza sólida. Planetas de composición gaseosa. [editar]Estrella central El Sol es la estrella del sistema planetario en el que se encuentra la Tierra; por tanto, es la más cercana a la Tierra y el astro con mayor brillo aparente. Su presencia o su ausencia en el cielo determinan, respectivamente, el día y la noche. La energía radiada por el Sol es aprovechada por los seres fotosintéticos, que constituyen la base de la cadena trófica, siendo así la principal fuente de energía de la vida. También aporta la energía que mantiene en funcionamiento los procesos climáticos. El Sol es una estrella que se encuentra en la fase denominada secuencia principal, con un tipo espectral G2, que se formó hace unos 5000 millones de años y permanecerá en la secuencia principal aproximadamente otros 5000 millones de años. El Sol, junto con la Tierra y todos los cuerpos celestes que orbitan a su alrededor, forman el Sistema Solar. A pesar de ser una estrella mediana, es la única cuya forma se puede apreciar a simple vista, con un diámetro angular de 32' 35" de arco en el perihelio y 31' 31" en el afelio, lo que da un diámetro medio de 32' 03". Por una extraña coincidencia, la combinación de tamaños y distancias del Sol y la Luna respecto de la tierra son tales que se ven, aproximadamente, con el mismo tamaño aparente en el cielo. Esto permite una amplia gama de eclipses solares distintos (totales, anulares o parciales). [editar]Planetas El 24 de agosto de 2006, en Praga, en la XXVI Asamblea General la Unión Astronómica Internacional (UAI), se excluyó a Plutón como planeta del Sistema Solar. Tras una larga controversia sobre esta resolución, se tomó la decisión por unanimidad. Con esto se reconoce el error de haber otorgado la categoría de planeta a Plutón en 1930, año de su descubrimiento. Desde ese día el Sistema Solar queda compuesto por 8 planetas. Los 8 planetas que integran el Sistema Solar, de acuerdo con su cercanía al Sol, son: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno. Y estos planetas son astros que giran de manera circular formando órbitas alrededor del Sol, tienen suficiente masa para que su gravedad supere las fuerzas del cuerpo rígido, de manera que asuman una forma en equilibrio hidrostático (prácticamente esférica) y han limpiado la vecindad de su órbita de planetesimales. A Saturno, Júpiter, Urano y Neptuno los científicos los han denominado planetas gaseosos por contener en sus atmósferas gases como el helio, el hidrógeno y el metano, sin saber a ciencia cierta la estructura de su superficie. [editar]Características principales de los planetas del Sistema Solar * Ver Tierra para los valores absolutos. Planeta Diámetro ecuatorial Masa Radio orbital (UA) Periodo orbital (años) Periodo de rotación (días) Satélites naturales Imagen Mercurio 0,382 0,06 0,38 0,241 58,6 0 Venus 0,949 0,82 0,72 0,615 243 0 Tierra* 1,00 1,00 1,00 1,00 1,00 1 Marte 0,53 0,11 1,52 1,88 1,03 2 Júpiter 11,2 318 5,20 11,86 0,414 63 Saturno 9,41 95 9,55 29,46 0,426 61 Urano 3,98 14,6 19,22 84,01 0,718 27 Neptuno 3,81 17,2 30,06 164,79 0,6745 13 [editar]Planetas enanos Poco después de su descubrimiento en 1930, Plutón fue clasificado como un planeta por la Unión Astronómica Internacional (UAI). Sin embargo, basándose en descubrimientos posteriores, se abrió un debate por algunos, con objeto de reconsiderar dicha decisión. Finalmente, el 24 de agosto de 2006 la UAI decidió que el número de planetas no se ampliará a 12, como se propuso en la reunión que mantuvieron sus miembros en Praga, sino que debía reducirse de 9 a 8. El gran perjudicado de este nuevo orden cósmico fue, nuevamente, el polémico Plutón, cuyo pequeño tamaño y su evolución dinámica en el Sistema Solar llevó a los miembros de la UAI a excluirlo definitivamente de su nueva definición de planeta. En dicha reunión de la UAI se creó una nueva clase de planeta, los planetas enanos, que a diferencia de los planetas, no han limpiado la vecindad de su órbita. Los cinco planetas enanos del Sistema Solar ordenados por proximidad al Sol son Ceres, Plutón, Haumea, Makemake y Eris. [editar]Características principales de los planetas enanos del Sistema Solar Los datos se expresan en relación a la Tierra. Planeta enano Diámetro medio Diámetro Km Masa Radio orbital(UA) Periodo orbital (años) Periodo de rotación (días) Satélites naturales Imagen Ceres 0,074 952,4 0,00016 2,766 4,599 0,3781 0 Plutón 0,22 2302 0,82 39,482 247,92 -6,3872 3 Haumea 0,09 0,0007 43,335 285,4 0,167 2 Makemake 0,12 0,0007 45,792 309,9 ? 0 Eris 0,19 2398 0,0028 67,668 557 ? 1 [editar]Cuerpos menores del sistema solar Cinturón de asteroides (Véase también: Lista de asteroides). Objetos transneptunianos y cinturón de Kuiper (Véase también: Quaoar). Nube de Oort (Véase también: Cometa; Sedna). Entre los cuerpos menores, los planetas menores son cuerpos con masa suficiente para redondear sus superficies. Antes del descubrimiento de Caronte y los primeros objetos transneptunianos el término "planeta menor" era un sinónimo de asteroide. Sin embargo, el término asteroide suele reservarse para los cuerpos rocosos pequeños del Sistema Solar interior. La mayoría de los objetos transneptunianos son cuerpos helados, como cometas, aunque la mayoría de los que es posible descubrir a esas distancias son mucho mayores que los cometas. Los mayores objetos transneptunianos son mucho mayores que los mayores asteroides. Los satélites naturales de los planetas mayores también tienen un amplio rango de tamaños y superficies, siendo los mayores de ellos mucho mayores que los asteroides mayores. La siguiente tabla muestra las características más importantes de los principales cuerpos menores del Sistema Solar algunos de los cuales en un futuro podrían ser "ascendidos" al rango de planeta enano, como pasó con Makemake y Haumea. Todas las características se dan con respecto a la Tierra. Planetas menores o planetoides. Planetas menores Diámetro ecuatorial Masa Radio orbital (UA) Periodo orbital (años) Periodo de rotación (días) Imagen (90482) Orcus 0,066 - 0,148 0,000 10 - 0,001 17 39,47 248 ? (28978) Ixión ~0,083 0,000 10 - 0,000 21 39,49 248 ? (55636) 2002 TX300 0,0745 ? 43,102 283 ? (20000) Varuna 0,066 - 0,097 0,000 05 - 0,000 33 43,129 283 0,132 o 0,264 (50000) Quaoar 0,078 - 0,106 0,000 17 - 0,000 44 43,376 285 ? (90377) Sedna 0,093 - 0,141 0,000 14 - 0,001 02 502,040 11500 20 [editar]Análisis y composición de los planetas del Sistema Solar Planetas internos Planetas externos Mercurio Venus Tierra Marte Júpiter Saturno Urano Neptuno diámetro (km) 4.878 12.100 12.756 6.787 142.984 120.536 51.108 49.538 Distancia medías al sol (1UA= 149.600.000 km) 0,39 UA 0,72 UA 1 UA 1,52 UA 5,2 UA 9,54 UA 19,19 UA 30,06 UA Periodo de rotacion 58,6 días 243 días 23,9 horas 24,6 horas 9,8 horas 10,6 horas 17,2 horas 16 horas Periodo de revolución 87,9 días 224,7 días 365,2 días 686,9 días 11,8 años 29,4 años 84 años 164,8 años Inclinación de órbita (en relación con la eclíptica) 7,0° 3,4° 0,0° 1,9° 1,3° 2,5° 0,8° 1,8° Masa (en relación con la Tierra) 0,056 0,82 1 (5,9 x 1024 kg) 0,11 318 95 15 17 Núm. de satélites conocidos 0 0 1 2 17 22 21 8 Composición de la atmósfera Trazas de hidrógeno y helio 96% CO2, 3% nitrógeno,0.1% agua 78% nitrógeno, 21%oxigeno, 1% argón 95% CO2, 1.6% argón, 3% nitrógeno 90% hidrógeno, 10% helio, trazas de metano 96% hidrógeno, 3% helio, 0.5% metano 84% hidrógeno, 14% helio, 2% metano 74% hidrógeno, 25% helio, 1% metano [editar]Formación y evolución del Sistema Solar Concepción artística de un disco protoplanetario. Artículo principal: Formación y evolución del Sistema Solar Se da generalmente como precisa la formación del Sistema Solar hace unos 4.500 millones de años a partir de una nube de gas y de polvo que formó la estrella central y un disco circumestelar en el que, por la unión de las partículas más pequeñas, primero se habrían ido formando, poco a poco, partículas más grandes, posteriormente planetesimales, y luego protoplanetas hasta llegar a los actuales planetas. Véase también: Nebulosa protosolar [editar]Investigación y exploración del Sistema Solar Dada la perspectiva geocéntrica con la que es percibido el Sistema Solar por los humanos, su naturaleza y estructura fueron durante mucho tiempo desconocidos. Los movimientos aparentes de los objetos del Sistema Solar, observados desde la Tierra, se consideraban los movimientos reales de estos objetos alrededor de una Tierra estacionaria. Gran parte de los objetos del Sistema Solar no son observables sin la ayuda de instrumentos como el telescopio. Con la invención de éste comienza una era de descubrimientos (satélites galileanos; fases de Venus) en la que se abandona finalmente el sistema geocéntrico sustituyéndolo definitivamente por la visión copernicana del sistema heliocéntrico. En la actualidad el Sistema Solar es estudiado por telescopios terrestres, observatorios espaciales y misiones espaciales capaces de llegar hasta algunos de estos distantes mundos. Los cuerpos del Sistema Solar en los que se han posado sondas espaciales terrestres son Venus, la Luna, Marte, Júpiter y Titán. Todos los cuerpos mayores han sido visitados por misiones espaciales, incluyendo algunos cometas, como el Halley, y excluyendo Plutón. Véase también: Anexo:Cronología del descubrimiento de los planetas del Sistema Solar y sus satélites naturales Véase también: Exploración del Sistema Solar [editar]Ahora hablemos de los agujeros negros.       

Agujero negro El núcleo de la galaxia elíptica gigante M87, donde hay evidencia de un agujero negro supermasivo. También se observa un potente chorro (jet) de materia eyectada por los poderosos campos magnéticos generados por éste. Imagen tomada por el Telescopio espacial Hubble. Recreación de un agujero negro. Un agujero negro es una región finita del espacio-tiempo provocada por una gran concentración de masa en su interior, con enorme aumento de la densidad, lo que genera un campo gravitatorio tal que ninguna partícula material, ni siquiera los fotones de luz, pueden escapar de dicha región. La curvatura del espacio-tiempo o «gravedad de un agujero negro» provoca una singularidad envuelta por una superficie cerrada, llamada horizonte de sucesos. Esto es debido a la gran cantidad de energía del objeto celeste. El horizonte de sucesos separa la región del agujero negro del resto del Universo y es la superficie límite del espacio a partir de la cual ninguna partícula puede salir, incluyendo la luz. Dicha curvatura es estudiada por la relatividad general, la que predijo la existencia de los agujeros negros y fue su primer indicio. En los años 70, Hawking, Ellis y Penrose demostraron varios teoremas importantes sobre la ocurrencia y geometría de los agujeros negros.1 Previamente, en 1963, Roy Kerr había demostrado que en un espacio-tiempo de cuatro dimensiones todos los agujeros negros debían tener una geometría cuasi-esférica determinada por tres parámetros: su masa M, su carga eléctrica total e y su momento angular L. Se cree que en el centro de la mayoría de las galaxias, entre ellas la Vía Láctea, hay agujeros negros supermasivos. La existencia de agujeros negros está apoyada en observaciones astronómicas, en especial a través de la emisión de rayos X por estrellas binarias y galaxias activas. Contenido [ocultar] 1 Proceso de formación 2 Historia del agujero negro 3 Clasificación teórica 3.1 Según la masa 3.2 Según sus propiedades físicas 4 Zonas observables 5 La entropía en los agujeros negros 6 Los agujeros negros en la física actual 6.1 Descubrimientos recientes 6.1.1 El mayor 6.1.2 El menor 6.1.3 Chorros de plasma 6.2 Formación de estrellas por el influjo de agujeros negros 7 Véase también 8 Referencias 8.1 Bibliografía 8.2 Enlaces externos [editar]Proceso de formación El origen de los agujeros negros es planteado por el astrofísico Stephen Hawking en su libro de 1988 titulado en español Historia del tiempo: del Big Bang a los agujeros negros donde explica el proceso que da origen a la formación de los agujeros negros. Dicho proceso comienza posteriormente a la muerte de una gigante roja (estrella de gran masa), llámese muerte a la extinción total de su energía. Tras varios miles de millones de años de vida, la fuerza gravitatoria de dicha estrella comienza a ejercer fuerza sobre sí misma originando una masa concentrada en un pequeño volumen, convirtiéndose en una enana blanca. En este punto dicho proceso puede proseguir hasta el colapso de dicho astro por la auto atracción gravitatoria que termina por convertir a esta enana blanca en un agujero negro. Este proceso acaba por reunir una fuerza de atracción tan fuerte que atrapa hasta la luz en éste. En palabras más simples, un agujero negro es el resultado final de la acción de la gravedad extrema llevada hasta el límite posible. La misma gravedad que mantiene a la estrella estable, la empieza a comprimir hasta el punto que los átomos comienzan a aplastarse. Los electrones en órbita se acercan cada vez más al núcleo atómico y acaban fusionándose con los protones, formando más neutrones. El resultado, una estrella neutrónica. En este punto, dependiendo de la masa de la estrella, el plasma de neutrones dispara una reacción en cadena irreversible, la gravedad aumenta exponencialmente al disminuirse la distancia que había originalmente entre los átomos. Las partículas de neutrones implotan, aplastándose más, logrando como resultado un agujero negro: gravedad infinita en un espacio de un tamaño inconmesurablemente pequeño. [editar]Historia del agujero negro Imagen simulada de como se vería un agujero negro con una masa de diez soles, a una distancia de 600 kilómetros, con la vía láctea al fondo (ángulo horizontal de la abertura de la cámara fotográfica: 90°). El concepto de un cuerpo tan denso que ni la luz pudiese escapar de él, fue descrito en un artículo enviado en 1783 a la Royal Society por un geólogo inglés llamado John Michell. Por aquel entonces la teoría de Newton de gravitación y el concepto de velocidad de escape eran muy conocidas. Michell calculó que un cuerpo con un radio 500 veces el del Sol y la misma densidad, tendría, en su superficie, una velocidad de escape igual a la de la luz y sería invisible. En 1796, el matemático francés Pierre-Simon Laplace explicó en las dos primeras ediciones de su libro Exposition du Systeme du Monde la misma idea aunque, al ganar terreno la idea de que la luz era una onda sin masa, en el siglo XIX fue descartada en ediciones posteriores. En 1915, Einstein desarrolló la relatividad general y demostró que la luz era influenciada por la interacción gravitatoria. Unos meses después, Karl Schwarzschild encontró una solución a las ecuaciones de Einstein, donde un cuerpo pesado absorbería la luz. Se sabe ahora que el radio de Schwarzschild es el radio del horizonte de sucesos de un agujero negro que no gira, pero esto no era bien entendido en aquel entonces. El propio Schwarzschild pensó que no era más que una solución matemática, no física. En 1930, Subrahmanyan Chandrasekhar demostró que un cuerpo con una masa crítica, (ahora conocida como límite de Chandrasekhar) y que no emitiese radiación, colapsaría por su propia gravedad porque no había nada que se conociera que pudiera frenarla (para dicha masa la fuerza de atracción gravitatoria sería mayor que la proporcionada por el principio de exclusión de Pauli). Sin embargo, Eddington se opuso a la idea de que la estrella alcanzaría un tamaño nulo, lo que implicaría una singularidad desnuda de materia, y que debería haber algo que inevitablemente pusiera freno al colapso, línea adoptada por la mayoría de los científicos. En 1939, Robert Oppenheimer predijo que una estrella masiva podría sufrir un colapso gravitatorio y, por tanto, los agujeros negros podrían ser formados en la naturaleza. Esta teoría no fue objeto de mucha atención hasta los años 60 porque, después de la Segunda Guerra Mundial, se tenía más interés en lo que sucedía a escala atómica. En 1967, Stephen Hawking y Roger Penrose probaron que los agujeros negros son soluciones a las ecuaciones de Einstein y que en determinados casos no se podía impedir que se crease un agujero negro a partir de un colapso. La idea de agujero negro tomó fuerza con los avances científicos y experimentales que llevaron al descubrimiento de los púlsares. Poco después, en 1969, John Wheeler acuñó el término "agujero negro" durante una reunión de cosmólogos en Nueva York, para designar lo que anteriormente se llamó "estrella en colapso gravitatorio completo". [editar]Clasificación teórica Según su origen, teóricamente pueden existir al menos tres clases de agujeros negros: [editar]Según la masa Agujeros negros supermasivos: con masas de varios millones de masas solares. Se hallarían en el corazón de muchas galaxias. Se forman en el mismo proceso que da origen a las componentes esféricas de las galaxias. Agujeros negros de masa estelar. Se forman cuando una estrella de masa 2,5 mayor que la masa del Sol se convierte en supernova e implosiona. Su núcleo se concentra en un volumen muy pequeño que cada vez se va reduciendo más. Micro agujeros negros. Son objetos hipotéticos, algo más pequeños que los estelares. Éstos pueden llegar a evaporarse en un período relativamente corto fácilmente mediante emisión de radiación de Hawking si son suficientemente pequeños. [editar]Según sus propiedades físicas Para un agujero negro descrito por las ecuaciones de Einstein, existe un teorema denominado de sin pelos (en inglés No-hair theorem), que afirma que cualquier objeto que sufra un colapso gravitatorio alcanza un estado estacionario como agujero negro descrito sólo por 3 parámetros: su masa M, su carga Q y su momento angular J. Así tenemos la siguiente clasificación para el estado final de un agujero negro: El agujero negro más sencillo posible es el agujero negro de Schwarzschild, que no rota ni tiene carga. Si no gira pero posee carga eléctrica, se tiene el llamado agujero negro de Reissner-Nordstrøm. Un agujero negro en rotación y sin carga es un agujero negro de Kerr. Si además posee carga, hablamos de un agujero negro de Kerr-Newman. [editar]Zonas observables Visión de un artista de un agujero negro con disco de acreción. Representación artística de un agujero negro con una estrella del compañero de cerca que se mueve en órbita alrededor que excede su límite de Roche. La materia en que cae forma un disco de acrecimiento, con algo de la materia que es expulsada en chorros polares colimados altamente energéticos. En las cercanías de un agujero negro se suele formar un disco de acrecimiento, compuesto de materia con momento angular, carga eléctrica y masa, la que es afectada por la enorme atracción gravitatoria del mismo, ocasionando que inexorablemente atraviese el horizonte de sucesos y, por lo tanto, incremente el tamaño del agujero. Véase también: Acreción En cuanto a la luz que atraviesa la zona del disco, también es afectada, tal como está previsto por la Teoría de la Relatividad. El efecto es visible desde la Tierra por la desviación momentánea que produce en posiciones estelares conocidas, cuando los haces de luz procedentes de las mismas transitan dicha zona. Hasta hoy es imposible describir lo que sucede en el interior de un agujero negro; sólo se puede imaginar, suponer y observar sus efectos sobre la materia y la energía en las zonas externas y cercanas al horizonte de sucesos y la ergosfera. Uno de los efectos más controvertidos que implica la existencia de un agujero negro es su aparente capacidad para disminuir la entropía del Universo, lo que violaría los fundamentos de la termodinámica, ya que toda materia y energía electromagnética que atraviese dicho horizonte de sucesos, tienen asociados un nivel de entropía. Stephen Hawking propone en uno de sus libros que la única forma de que no aumente la entropía sería que la información de todo lo que atraviese el horizonte de sucesos siga existiendo de alguna forma. Otra de las implicaciones de un agujero negro supermasivo sería la probabilidad que fuese capaz de generar su colapso completo, convirtiéndose en una singularidad desnuda de materia. [editar]La entropía en los agujeros negros Según Stephen Hawking, en los agujeros negros se viola el segundo principio de la termodinámica, lo que dio pie a especulaciones sobre viajes en el espacio-tiempo y agujeros de gusano. El tema está siendo motivo de revisión; actualmente Hawking se ha retractado de su teoría inicial y ha admitido que la entropía de la materia se conserva en el interior de un agujero negro (véase enlace externo). Según Hawking, a pesar de la imposibilidad física de escape de un agujero negro, estos pueden terminar evaporándose por la llamada radiación de Hawking, una fuente de rayos X que escapa del horizonte de sucesos. El legado que entrega Hawking en esta materia es de aquellos que, con poca frecuencia en física, son calificados de bellos. Entrega los elementos matemáticos para comprender que los agujeros negros tienen una entropía gravitacional intrínseca. Ello implica que la gravedad introduce un nivel adicional de impredictibilidad por sobre la incertidumbre cuántica. Parece, en función de la actual capacidad teórica, de observación y experimental, como si la naturaleza asumiera decisiones al azar o, en su efecto, alejadas de leyes precisas más generales. La hipótesis de que los agujeros negros contienen una entropía y que, además, ésta es finita, requiere para ser consecuente que tales agujeros emitan radiaciones térmicas, lo que al principio parece increíble. La explicación es que la radiación emitida escapa del agujero negro, de una región de la que el observador exterior no conoce más que su masa, su momento angular y su carga eléctrica. Eso significa que son igualmente probables todas las combinaciones o configuraciones de radiaciones de partículas que tengan energía, momento angular y carga eléctrica iguales. Son muchas las posibilidades de entes, si se quiere hasta de los más exóticos, que pueden ser emitidos por un agujero negro, pero ello corresponde a un número reducido de configuraciones. El número mayor de configuraciones corresponde con mucho a una emisión con un espectro que es casi térmico. Físicos como Jacob D. Bekenstein han relacionado a los agujeros negros y su entropía con la teoría de la información. [editar]Los agujeros negros en la física actual Se explican los fenómenos físicos mediante dos teorías en cierto modo contrapuestas y basadas en principios incompatibles: la mecánica cuántica, que explica la naturaleza de «lo muy pequeño», donde predomina el caos y la estadística y admite casos de evolución temporal no-determinista, y la relatividad general, que explica la naturaleza de «lo muy pesado» y que afirma que en todo momento se puede saber con exactitud dónde está un cuerpo, siendo esta teoría totalmente determinista. Ambas teorías están experimentalmente confirmadas pero, al intentar explicar la naturaleza de un agujero negro, es necesario discernir si se aplica la cuántica por ser algo muy pequeño o la relatividad por ser algo tan pesado. Está claro que hasta que no se disponga de una física más avanzada no se conseguirá explicar realmente la naturaleza de este fenómeno. [editar]Descubrimientos recientes En 1995 un equipo de investigadores de la UCLA dirigido por Andrea Ghez demostró mediante simulación por ordenadores la posibilidad de la existencia de agujeros negros supermasivos en el núcleo de las galaxias. Tras estos cálculos mediante el sistema de óptica adaptativa se verificó que algo deformaba los rayos de luz emitidos desde el centro de nuestra galaxia (la Vía Láctea). Tal deformación se debe a un invisible agujero negro supermasivo que ha sido denominado Sgr.A (o Sagittarius A). En 2007-2008 se iniciaron una serie de experimentos de interferometría a partir de medidas de radiotelescopios para medir el tamaño del agujero negro supermasivo en el centro de la Vía Láctea, al que se le calcula una masa 4'5 millones de veces mayor que la del Sol y una distancia de 26.000 años luz (unos 255.000 billones de km respecto de la Tierra)2 . El agujero negro supermasivo del centro de nuestra galaxia actualmente sería poco activo ya que ha consumido gran parte de la materia bariónica, que se encuentra en la zona de su inmediato campo gravitatorio y emite grandes cantidades de radiación. Por su parte, la astrofísica Feryal Özel ha explicado algunas características probables en torno a un agujero negro: cualquier cosa, incluido el espacio vacío, que entre en la fuerza de marea provocada por un agujero negro se aceleraría a extremada velocidad como en un vórtice y todo el tiempo dentro del área de atracción de un agujero negro se dirigiría hacia el mismo agujero negro. En el presente se considera que, pese a la perspectiva destructiva que se tiene de los agujeros negros, éstos al condensar en torno a sí materia sirven en parte a la constitución de las galaxias y a la formación de nuevas estrellas. En junio de 2004 astrónomos descubrieron un agujero negro súper masivo, el Q0906+6930, en el centro de una galaxia distante a unos 12.700 millones de años luz. Esta observación indicó una rápida creación de agujeros negros súper masivos en el Universo joven. La formación de micro agujeros negros en los aceleradores de partículas ha sido informada,3 pero no confirmada. Por ahora, no hay candidatos observados para ser agujeros negros primordiales. [editar]El mayor Dejando a un lado los agujeros negros supermasivos que suelen estar en el núcleo de las galaxias y cuya masa son de millones de veces nuestro Sol, el mayor agujero negro de masa estelar conocido hasta la fecha, se descubrió el año 2007 y fue denominado IC 10 X-1. Está en la galaxia enana IC 10 situada en la constelación de Casiopea, a una distancia de 1,8 millones de años luz (17 billones de kilómetros) de la Tierra, con una masa de entre 24 y 33 veces la de nuestro Sol.4 Posteriormente, en abril de 2008, la revista Nature publicó un estudio realizado en la Universidad de Turku (Finlandia). Según dicho estudio, un equipo de científicos dirigido por Mauri Valtonen descubrió un sistema binario, un blazar, llamado OJ 287, en la constelación de Cáncer. Tal sistema parece estar constituido por un agujero negro menor que orbita en torno a otro mayor, siendo la masa del mayor de 18.000 millones de veces la de nuestro Sol, lo que lo convierte en el mayor agujero negro conocido. Se supone que en cada intervalo de rotación el agujero negro menor, que tiene una masa de 100 millones de soles, golpea la ergosfera del mayor dos veces, generándose un quásar. Situado a 3500 millones de años luz de la Tierra,5 está relativamente cerca de la Tierra para ser un quásar. [editar]El menor Sin contar los posibles microagujeros negros que casi siempre son efímeros al producirse a escalas subatómicas; macroscópicamente en abril de 2008 el equipo coordinado por Nikolai Saposhnikov y Lev Titarchuk ha identificado el más pequeño de los agujeros negros conocidos hasta la fecha; ha sido denominado J 1650, se ubica en la constelación Ara (o Altar) de la Vía Láctea (la misma galaxia de la cual forma parte la Tierra). J 1650 tiene una masa equivalente a 3,8 soles y tan solo 24 km de diámetro se habría formado por el colapso de una estrella; tales dimensiones estaban previstas por las ecuaciones de Einstein. Se considera que son prácticamente las dimensiones mínimas que puede tener un agujero negro ya que una estrella que colapsara y produjera un fenómeno de menor masa se transformaría en una estrella de neutrones. Se considera que pueden existir muchos más agujeros negros de dimensiones semejantes. [editar]Chorros de plasma En abril de 2008 la revista Nature publicó un estudio realizado en la Universidad de Boston dirigido por Alan Marscher donde explica que chorros de plasma colimados parten de campos magnéticos ubicados cerca del borde de los agujeros negros. En zonas puntuales de tales campos magnéticos los chorros de plasma son orientados y acelerados a velocidades cercanas a c (velocidad de la luz), tal proceso es comparable a la aceleración de partículas para crear una corriente de chorro (jet) en un reactor. Cuando los chorros de plasma originados por un agujero negro son observables desde la Tierra tal tipo de agujero negro entra en la categoría de blazar. Que un agujero negro "emita" radiaciones parece una contradicción, sin embargo esto se explica: todo objeto (supóngase una estrella) que es atrapado por la gravitación de un agujero negro, antes de ser completamente "engullido", antes de pasar tras el horizonte de sucesos, se encuentra tan fuertemente presionado por las fuerzas de marea del agujero negro en la zona de la ergosfera que una pequeña parte de su materia sale disparada a velocidades próximas a la de la luz (como cuando se aprieta fuertemente una naranja: parte del material de la naranja sale eyectado en forma de chorros de jugo, en el caso de los objetos atrapados por un agujero negro, parte de su masa sale disparada centrífugamente en forma de radiación fuera del campo gravitatorio de la singularidad). [editar]Formación de estrellas por el influjo de agujeros negros Nuevas estrellas podrían formarse a partir de los discos elípticos en torno a agujeros negros; tales discos elípticos se producen por antiguas nubes de gas desintegradas previamente por los mismos agujeros negros; las estrellas producidas por condensación o acreción de tales discos elípticos al parecer tienen órbitas muy elípticas en torno a los agujeros negros supermasivos. [editar]Véase también Agujero blanco Agujero de gusano Agujero negro de Kerr Agujero negro de Kerr-Newman Agujero negro de Reissner-Nordstrøm Agujero negro de Schwarzschild Diagrama de Penrose Estrella de neutrones Galaxia activa Galaxia elíptica M87 Historia del tiempo (libro de Hawking) Magnetar Microagujero negro Objeto astronómico Principio holográfico Púlsar Radiación de Hawking Karl Schwarzschild Singularidad desnuda Teoría de los universos fecundos [editar] Ahora hablemos de las supernovas.Una supernova es la explosión de una estrella se piensa que esto le va a pasar al sol dentroArchivo:SupernovaII.png de muchoooooo tiempo.Supernova Para otros usos de este término, véase Supernova (desambiguación). Remanente de la supernova de Kepler, SN 1604. Una supernova (del latín nova, «nueva») es una explosión estelar que puede manifestarse de forma muy notable, incluso a simple vista, en lugares de la esfera celeste donde antes no se había detectado nada en particular. Por esta razón, a eventos de esta naturaleza se los llamó inicialmente stellae novae («estrellas nuevas») o simplemente novae. Con el tiempo se hizo la distinción entre fenómenos aparentemente similares pero de luminosidad intrínseca muy diferente; los menos luminosos continuaron llamándose novae (novas), en tanto que a los más luminosos se les agregó el prefijo «super-». Las supernovas producen destellos de luz intensísimos que pueden durar desde varias semanas a varios meses. Se caracterizan por un rápido aumento de la intensidad hasta alcanzar un máximo (mas que el resto de la galaxia) para luego decrecer en brillo de forma más o menos suave hasta desaparecer completamente. Se han propuesto varios escenarios para su origen. Pueden ser estrellas masivas que ya no pueden desarrollar reacciones termonucleares en su núcleo, y que son incapaces de sostenerse por la presión de degeneración de los electrones, lo que las lleva a contraerse repentinamente (colapsar) y generar, en el proceso, una fuerte emisión de energía. Otro proceso más violento aún, capaz de generar destellos incluso mucho más intensos, puede suceder cuando una enana blanca miembro de un sistema binario cerrado, recibe suficiente masa de su compañera como para superar el límite de Chandrasekhar y proceder a la fusión instantánea de todo su núcleo: esto dispara una explosión termonuclear que expulsa casi todo, si no todo, el material que la formaba. La explosión de supernova provoca la expulsión de las capas externas de la estrella por medio de poderosas ondas de choque, enriqueciendo el espacio que la rodea con elementos pesados. Los restos eventualmente componen nubes de polvo y gas. Cuando el frente de onda de la explosión alcanza otras nubes de gas y polvo cercanas, las comprime y puede desencadenar la formación de nuevas nebulosas solares que originan, después de cierto tiempo, nuevos sistemas estelares (quizá con planetas, al estar las nebulosas enriquecidas con los elementos procedentes de la explosión). Estos residuos estelares en expansión se denominan remanentes y pueden tener o no un objeto compacto en su interior. Dicho remanente terminará por diluirse en el medio interestelar al cabo de millones de años. Un ejemplo es RCW 86. Las supernovas pueden liberar varias veces 1044 J de energía. Esto ha resultado en la adopción del foe (1044 J) como unidad estándar de energía en el estudio de supernovas. Contenido [ocultar] 1 Clasificación 1.1 Índice 1.2 Tipo Ia 1.3 Tipos Ib y Ic 1.4 Tipo II 2 Nombres de supernovas 3 Supernovas destacadas 4 El papel de las supernovas en la evolución estelar 5 Bibliografía 6 Referencias 7 Véase también 8 Enlaces externos 8.1 Español 8.2 Inglés [editar]Clasificación Imagen del telescopio espacial Hubble mostrando la supernova 1994D abajo a la izquierda y la galaxia NGC 4526 La clasificación de las supernovas tiene razones históricas, y nació de los primeros intentos, por parte de los astrónomos, de comprenderlas; es así como se empezó agrupándolas de acuerdo a las líneas de absorción de diferentes elementos químicos que aparecen en sus espectros. La primera clave para la división es la presencia o ausencia de hidrógeno. Si el espectro de una supernova no contiene una línea de hidrógeno es clasificada como tipo I; de lo contrario, se la clasifica como tipo II. Dentro de estos dos grupos principales hay también subdivisiones de acuerdo a la presencia de otras líneas. [editar]Índice Tipo I Sin líneas de Balmer del hidrógeno Tipo Ia Línea Si II a 615.0 nm Tipo Ib Línea He I a 587.6 nm Tipo Ic Sin líneas del helio Tipo II Con líneas de Balmer del hidrógeno Tipo II-P Meseta Tipo II-L Decrecimiento lineal [editar]Tipo Ia Las supernovas de tipo Ia son, por mucho, las más potentes de todas, pudiendo emitir un brillo varias veces superior al de la galaxia que las acoge. (Recreación artística). Las supernovas de tipo Ia carecen de helio y presentan, en cambio, una línea de silicio en el espectro. La teoría más aceptada con respecto a este tipo de supernovas sugiere que son el resultado de la acreción de masa por parte de una enana blanca de carbono-oxígeno desde una estrella compañera, generalmente una gigante roja. Esto puede suceder en sistemas estelares binarios muy cercanos. Ambas estrellas tienen la misma edad y los modelos indican que casi siempre tendrán una masa semejante. Pero normalmente siempre hay una más masiva que la otra y unas ligeras diferencias en este aspecto hacen que la más masiva evolucione (abandone la secuencia principal) antes que la estrella de menor masa. Una estrella con menos de 8-9 masas solares evoluciona, al final de su vida, en una enana blanca. Por esto es corriente que, en sus etapas finales, un sistema binario esté constituido por una enana blanca y una gigante roja con sus capas exteriores muy expandidas (ver:Evolución estelar:gigantes rojas). Esta envoltura, básicamente de hidrógeno y helio, está poco cohesionada gravitatoriamente, por lo que es capturada fácilmente por la enana blanca. Alrededor de cada estrella hay un perímetro de influencia, delimitado por una superficie equipotencial llamada lóbulo de Roche, en el que predomina su fuerza de gravedad. Si parte de la envoltura de la gigante roja, que siempre está tendiendo a aumentar de volumen, invade el lóbulo de la enana blanca, será atraída por ésta. El material tiene que depositarse con la suficiente rapidez para que no se encienda la capa superficial de hidrógeno (si esto ocurre, el fenómeno se conoce como nova). Si el ritmo de acreción es el adecuado, la masa de la enana blanca pronto alcanza el límite de Chandrasekhar, momento en el cual los electrones degenerados ya no son capaces de sostener el objeto. El aumento de presión resulta en el colapso de la estrella, cuyas temperaturas se disparan hasta llegar a iniciar la fusión del carbono en el su núcleo. Esta ignición alcanza toda la estrella, empezando en su centro y extendiéndose rápidamente hasta las capas más externas. Dado que tienen muy poco hidrógeno en su superficie, éste se ioniza rápidamente, volviéndose transparente e indetectable cuando se leen los espectros de estos destellos luminosos. La manera en que propaga la energía de la explosión en el interior de la enana es aún objeto de debate entre los científicos. Si bien se supone que la fuente principal de energía está en el centro, se desconoce si existen otros puntos simultáneos de ignición que generen ondas de choque convergentes que potencien el rendimiento de la explosión. Las turbulencias generadas por la inestabilidad de Rayleigh-Taylor parecen ser causa de una rápida propagación del frente de ignición en todo el volumen de la estrella. Se desconoce cómo dicha ignición hace su transición de deflagración subsónica a detonación supersónica. Durante la detonación se quema, en cuestión de segundos, una cantidad de carbono que a una estrella normal le llevaría siglos. Esta enorme energía libera una poderosa onda de choque que destruye la estrella, expulsando toda su masa a velocidades de alrededor de los 10.000 km/s. La energía liberada en la explosión también causa un aumento extremo en la luminosidad, por lo que estas supernovas llegan a ser las más luminosas de todas, emitiendo alrededor de 1044 J (1 foe). Normalmente no quedan rastros de la estrella que originó el cataclismo, sino sólo restos de gas y polvo sobrecalentados en rápida expansión. La desaparición, por consiguiente, del campo gravitatorio de la enana blanca, produce un cambio en la trayectoria de la estrella vecina, si ésta pudo sobrevivir a la detonación. Al no verse sometida a la fuerza de atracción de la estrella destruida, la otra saldrá disparada en la dirección que seguía en el momento del estallido, como si de una «honda» se tratase. Estas estrellas fugitivas se pueden en principio detectar ya que deberían tener velocidades mucho mayores que las de su entorno. Vale la pena recalcar nuevamente que el mecanismo que produce las supernovas de tipo Ia es, en cierto modo, similar al de las novas, pero en éstas la enana blanca acreta materia más lentamente, encendiéndose su superficie antes de que la masa total alcance el límite de Chandrasekhar. Este fenómeno en general no causa el colapso de la enana blanca, por lo que puede reiterarse, lo que no es el caso de las supernovas. La supernovas de tipo Ia son fenómenos muy raros ya que requieren unos requisitos muy estrictos para su formación. En primer lugar, sólo se producirían en sistemas binarios compuestos por estrellas de masa intermedia y baja. Estos sistemas en principio son bastante corrientes, pero aún hay más restricciones. La suma de las masas de ambas estrellas ha de ser mayor que la masa de Chandrasekhar (1,44 MSol). Han de estar lo suficientemente cerca como para que sus lóbulos de Roche puedan ser invadidos por la envoltura de la gigante roja en expansión. De ser posible, la envoltura de la gigante debería engullir a la enana blanca, lo cual garantizaría una absorción rápida del material y su frenado debido a la fricción con el gas estelar. Esto cerraría aún más la binaria, lo cual aumentaría el ritmo de la acreción. Si la absorción fuese demasiado lenta y pausada, ocurriría el mencionado fenómeno de nova periódica. También puede existir una supernova tipo Ia generada por la fusión de dos enanas blancas del mismo sistema binario. Puede ocurrir que ninguna de las dos logre por sí sola acretar la suficiente masa como para generar una supernova, pero juntas, en cambio, pueden superar la masa de Chandrasekhar. Dos enanas blancas en rotación emiten ondas gravitatorias y, con el tiempo, sus órbitas se acercan y aceleran, lo cual a su vez acelera la emisión de ondas y retroalimenta el proceso. Puede llegar un momento en el que una de las dos enanas (la menos masiva), se disgregue y forme un toro (forma de «dónut») alrededor de la otra estrella. Después, el material del disco empieza a caer sobre la superficie. El ritmo no debe ser ni muy lento ni muy rápido tampoco, ya que en cualquiera de los casos se produciría la quema prematura del carbono en la superficie. Curva de luz de una supernova de tipo Ia. Su máximo de emisión es el mayor entre todos los tipos de supernova. Se aprecia perfectamente la fase de emisión del níquel diferenciada de la del cobalto. Cuanto más rápido decrece la luz menor es el máximo. Este hecho permite la utilización de estos objetos como candelas estándar de precisión. Las supernovas de tipo Ia poseen una curva de luz característica. Cerca del momento de luminosidad máxima, el espectro contiene líneas de elementos de masa intermedia que van desde el oxígeno hasta el calcio (presentes en las capas externas de la estrella). Meses después de la explosión, estos elementos se han hecho totalmente transparentes y la luz que domina es la que proviene de los elementos más pesados procedentes del núcleo. En el máximo de emisión se concentra la luz emitida por el níquel-56. Éste va decayendo por radiactividad a cobalto-56, también radiactivo. En un momento dado, la emisión de luz es dominada por el cobalto, cuyos fotones de alta energía suavizan la curva de decrecimiento del brillo. La luminosidad termina con la conversión de todo el cobalto a hierro-56, el cual emitirá las líneas más tardías producto de su estado ionizado. A diferencia de otros tipos de supernovas, las supernovas de tipo Ia se encuentran en todo tipo de galaxias, incluyendo las elípticas. Asimismo, tampoco muestran ninguna preferencia por regiones de formación estelar. Esto es así porque los sucesos que desembocan en una supernova Ia pueden durar mucho tiempo en términos estelares, sobre todo la aproximación de los dos cuerpos. Además no se originan a partir de estrellas muy masivas, por lo que no tienen por qué ubicarse en zonas de formación estelar reciente (donde se encuentran las gigantes azules), de modo que pueden acontecer en las regiones más viejas de las galaxias. Esta particularidad permite encontrarlas mirando cualquier parte del cielo, con una distribución homogénea con probabilidad constante allí donde haya galaxias. Dada la similitud en las formas y en la magnitud de las curvas de luz de todas las supernovas de tipo Ia observadas hasta la fecha, es que son utilizadas como medida estándar de luminosidad en astronomía extragaláctica, lo que en términos astrofísicos se llama una candela estándar; en este caso, se pueden calibrar con una décima de magnitud. Las ventajas con respecto a las demás candelas estándar, como las cefeidas clásicas, es que su alta luminosidad permite detectarlas en galaxias muy lejanas, ayudando a inferir distancias de objetos que, de otra manera, sería imposible calcular. La razón de la similitud de las curvas de luminosidad es aún cuestión de debate, pero parece estar relacionada, en parte, con el hecho de que las condiciones iniciales en que se generan estos fenómenos sean casi idénticas. Estas propiedades tan favorables han revolucionado la cosmología, permitiendo develar la expansión acelerada del universo gracias a su utilización estadística. En la Vía Láctea, el candidato más conocido para este tipo de supernova es IK Pegasi (HR 8210), localizado a una distancia de tan sólo 150 años luz. Este sistema binario está formado por una estrella de secuencia principal y una enana blanca, separadas únicamente por 31 millones de km. La enana tiene una masa estimada en 1,15 veces la masa solar.1 Se piensa que pasaran varios billones de años antes de que la enana blanca llegue a la masa crítica necesaria para convertirse en una supernova de tipo Ia.2 3 [editar]Tipos Ib y Ic Los espectros de las supernovas de tipos Ib y Ic no muestran la línea del silicio presente en los espectros de las Ia; se cree que se trata de estrellas al final de su vida (como las tipo II), pero que perdieron todo su hidrógeno en etapas anteriores, por lo que las líneas de este elemento no aparecen en sus espectros. En particular, se piensa que las supernovas de tipo Ib resultan del colapso de una estrella de Wolf-Rayet que ha expulsado toda su envoltura de hidrógeno por medio de los intensos vientos propios de estas estrellas. Se conocen también varias de estas supernovas en sistemas binarios: en este caso, la estrella compañera puede ayudar a desligar gravitatoriamente el gas de la envoltura de la otra estrella, la que no necesita ser tan masiva como una Wolf-Rayet aislada. En casos extremos, cuando no sólo escapa el hidrógeno sino también el helio, puede quedar expuesto el núcleo de carbono, y éste sería el escenario de una supernova Ic. El proceso de la explosión de estas supernovas es esencialmente el mismo que el de las supernovas de colapso gravitatorio típicas, las tipo II. [editar]Tipo II Las supernovas de tipo II son el resultado de la imposibilidad de producir energía una vez que la estrella ha alcanzado el equilibrio estadístico nuclear con un núcleo denso de hierro y níquel. Estos elementos ya no pueden fusionarse para dar más energía, sino que requieren energía para fusionarse en elementos más pesados. La barrera de potencial de sus núcleos es demasiado fuerte para que la fusión sea rentable por lo que ese núcleo estelar inerte deja de sostenerse a sí mismo y a las capas que están por encima de él. La desestabilización definitiva de la estrella ocurre cuando la masa del núcleo de hierro alcanza el límite de Chandrasekhar, lo que normalmente toma apenas unos días. Es en ese momento cuando su peso vence a la presión que aportan los electrones degenerados del núcleo y éste colapsa. El núcleo llega a calentarse hasta los 3.000 millones de grados, momento en el que la estrella emite fotones de tan alta energía que hasta son capaces de desintegrar los átomos de hierro en partículas alfa y neutrones en un proceso llamado fotodesintegración; estas partículas son, a su vez, destruidas por otros fotones, generándose así una avalancha de neutrones en el centro de la estrella. Estas reacciones son endotérmicas, por lo que no ayudan a sostener el núcleo compacto y éste sigue colapsando, emitiendo más y más neutrones cada vez. De hecho provocan un enfriamiento del núcleo, lo que se traduce en una menor presión y, por tanto, en una aceleración del proceso. Los propios átomos de hierro captan parte del inmenso flujo de neutrones, transformándose en elementos más pesados por medio del fenómeno llamado captura de neutrones, o proceso-r. El núcleo se contrae tan rápido que deja un espacio de baja densidad casi vacío entre él y el resto de la estrella. La envoltura, por su parte, empieza a caer sobre el núcleo frenándose por un aluvión de fotones de frecuencia extrema, que fotodesintegran las capas más interiores de dicha envoltura. Esta destrucción de núcleos no sólo transmite momento sino que también produce un flujo de neutrones y protones que serán capturados por las capas siguientes para formar elementos más pesados. Simultáneamente, las densidades enormes que se alcanzan en la «sopa» de núcleos pesados y electrones en que se ha convertido el núcleo supercompactado, posibilitan una nueva reacción. Los electrones del núcleo estelar empiezan a caer sobre los núcleos atómicos reaccionando con los protones para formar neutrones en un proceso llamado captura de electrones por lo que, poco a poco, el núcleo se va convirtiendo en una masa de neutrones hiperdensa llamada neutronium. Los procesos de fotodesintegración y de captura de electrones aceleran aún más el hundimiento de la estrella, ya que, además, ahora también la presión de degeneración pierde fuerza rápidamente. Pero la captura de electrones no sólo resulta en la producción de neutrones sino también en la de neutrinos. La captura se produce a tal ritmo que se genera un flujo explosivo de neutrinos que es arrastrado por el colapso, hasta que su abundancia creciente los hace degenerar y, bloquear así, la captura de nuevos electrones. Por breves instantes los electrones ni siquiera pueden seguir combinándose con los protones ya que no hay lugar en el espacio de fases donde colocar a los neutrinos que resultarían, dado que éstos están ya degenerados. Pero esto no tarda en resolverse ya que, a consecuencia de este taponamiento, se produce un escape de los neutrinos del núcleo llevándose gran cantidad de energía, lo que reactiva las capturas y realimenta a los frentes de onda de neutrinos que se expanden con gran rapidez. La emisión de neutrinos durará unos 10 segundos. Las capas externas de material que caen hacia el núcleo se encuentran de camino con el frente de choque de la avalancha de neutrinos, también llamado neutrinosfera. A través de un proceso que no ha sido develado por completo aún, parte de la energía liberada en la explosión de neutrinos es transferida a las capas externas de la estrella. Se cree que, como se puede ver en la fórmula siguiente, los neutrinos son capaces de generar fotones mediante un proceso inverso al de generación de fotoneutrinos (ver:Neutrinos térmicos). Cuando la onda de choque alcanza la superficie de la estrella varias horas más tarde, ocurre un incremento enorme de su luminosidad. Si la masa del núcleo colapsante es lo suficientemente pequeña, entre 1,5 y 2,5 masas solares, los propios neutrones podrán frenar el colapso; si no, seguirá contrayéndose hasta concentrarse toda la materia en una singularidad, formando así un agujero negro. Esta frontera entre estrella de neutrones y agujero negro no está bien definida debido a la falta de entendimiento de los procesos del colapso de una supernova. En el caso de las supernovas que generan estrellas de neutrones, las capas externas apenas si llegan a chocar con la superficie del núcleo compacto. Es posible que ni la alcancen y antes hayan sido barridas por el flujo de neutrinos. En las que acaban en agujeros negros, inicialmente sí se forma una estrella de neutrones pero la cubierta posee tanta masa y empuje que gran parte de ésta cae sobre la estrella de neutrones haciendo que supere la masa máxima de unas 2,5 masas solares, aunque este límite tampoco se conoce con exactitud. Curvas de luz de las SNII-P y SNII-L. Las primeras tienen una fase de «meseta» durante la cual el gas ionizado se enfría al expandirse, recombinándose hasta volverse transparente. Este proceso compensa el decrecimiento de luz y mantiene la luminosidad hasta que se hace neutro, momento en el cual vuelve a decrecer. En el segundo caso, apenas hay capas externas, las que probablemente se perdieron por interacción con alguna estrella vecina. Se observa también que tiene un pico notablemente menos acentuado que las SNIa. La energía desarrollada por una supernova de tipo II típica es de unos 1046 J (unos 100 foes) emitidos en los 10 segundos de flujo explosivo de neutrinos. De toda esta energía, tan sólo un foe es absorbido por el material, reemitiéndose en forma de energía cinética del material en expansión. Entre 0,01 y 1 foes se emiten en forma de energía luminosa. Ésta última es la energía detectable ópticamente. Las supernovas con mejor rendimiento son las que dejan estrellas de neutrones como remanentes ya que, en este caso, el porcentaje de masa expulsado es máximo. En el caso de las que dejan un agujero negro, la expansión será menos eficiente porque gran parte de la energía de la explosión quedará atrapada en él. En cualquier caso, las supernovas de colapso difícilmente se acercarán al foe completo que liberan las supernovas tipo Ia. La cuestión de cómo las supernovas logran emitir toda esa energía aún no se entiende bien. De hecho, los modelos realizados por ordenador no dan explosión alguna o, si la dan, ésta es muy marginal. Se ha especulado sobre toda una serie de factores que podrían influir en la potencia de la explosión, o que incluso podrían ser cruciales para que ésta se produjera. En primer lugar puede estar la fuerza centrífuga, que es máxima en el plano ecuatorial y que, sin duda, tiene una contribución positiva ayudando a que el material escape. Con la compresión de la estrella dicha fuerza debería acentuarse al conservarse el momento angular de la estrella. Por otra parte están los campos magnéticos que también deberían contribuir con su presión magnética. Estos dos aspectos se omiten en los modelos porque ni tienen simetría esférica ni se pueden fijar debidamente al desconocerse sus magnitudes, que por otra parte deben ser diferentes para cada estrella. Las supernovas de tipo II pueden dividirse en los subtipos II-P y II-L. Los tipos II-P alcanzan una meseta en su curva de luz mientras que los tipos II-L poseen un decrecimiento lineal en su curva. La causa de esto se cree que es por diferencias en la envoltura de las estrellas. Las supernovas de tipo II-P poseen una gran envoltura de hidrógeno que atrapa la energía liberada en forma de rayos gamma y la liberan en frecuencias más bajas, mientras que las de tipo II-L, se cree, poseen envolturas mucho menores, convirtiendo menor cantidad de energía de rayos gamma en luz visible. Las masas de las estrellas que dan lugar a supernovas están entre alrededor de las 10 masas solares hasta las 40 o 50. Más allá de este límite superior (que tampoco se conoce con exactitud), los momentos finales de la estrella son implosiones completas en las que nada escapa al agujero negro que se forma, rápida y directamente, engulliéndolo todo antes de que un solo rayo de luz pueda salir. Estas estrellas literalmente se desvanecen al morir. Se ha especulado que algunas estrellas excepcionalmente masivas podrían producir hipernovas al extinguirse. El escenario propuesto para semejante fenómeno dice que, tras la transformación repentina del núcleo en agujero negro, de sus polos brotarán dos jets de plasma relativista. Estas intensas emisiones se producirían en la banda de frecuencias de los rayos gamma y podrían ser una explicación plausible para las enigmáticas explosiones de rayos gamma. La primera fase de la supernova es un colapso rápido del núcleo incapaz de sostenerse. Esto conlleva una fuerte emisión de fotones y neutrones que son absorbidos por las capas interiores frenando así su colapso. Simultáneamente un frente de choque de neutrinos se genera durante la neutronización del núcleo compacto. Finalmente, la neutrinosfera choca contra la cubierta y transmite su momento expulsando las capas y produciendo la explosión de supernova . [editar]Nombres de supernovas Los descubrimientos de supernovas son notificados a la UAI (Unión Astronómica Internacional), la cual distribuye una circular con el nombre recientemente asignado. El nombre se forma por el año del descubrimiento y la designación de una o dos letras. Las primeras 26 supernovas del año llevan letras de la A a la Z (vg. Supernova 1987A); las siguientes llevan aa, ab, etc. [editar]Supernovas destacadas Imagen en Rayos X de la supernova SN 1006, tomada por ASCA, un satélite de la NASA para el estudio de los rayos cósmicos. A continuación se muestra una lista de las más importantes supernovas vistas desde la Tierra en tiempos históricos. Las fechas que se dan señalan el momento en que fueron observadas. En realidad, las explosiones ocurrieron mucho antes, pues su luz ha tardado cientos o miles de años en llegar hasta la Tierra. 185 – SN 185 – referencias en China y posiblemente en Roma. Análisis de datos tomados en rayos X por el observatorio Chandra sugieren que los restos de la supernova RCW 86 corresponden con este evento histórico. 1006 – SN 1006 – Supernova muy brillante; referencias encontradas en Egipto, Iraq, Italia, Suiza, China, Japón y , posiblemente, Francia y Siria. 1054 – SN 1054 – Fue la que originó la actual Nebulosa del Cangrejo, se tiene referencia de ella por los astrónomos Chinos y, seguramente, por los nativos americanos. 1181 – SN 1181 – Dan noticia de ella los astrónomos chinos y japoneses. La supernova estalla en Casiopea y deja como remanente a la estrella de neutrones 3C 58 la cual es candidata a ser estrella extraña. 1572 – SN 1572 – Supernova en Casiopea, observada por Tycho Brahe y Jerónimo Muñoz, descrita en el libro del primero De Nova Stella donde se usa por primera vez el término "nova". 1604 – SN 1604 – Supernova en Ophiuchus, observada por Johannes Kepler; es la última supernova vista en la Vía Láctea. 1885 – S Andromedae en la Galaxia de Andrómeda, descubierta por Ernst Hartwig. 1987 – Supernova 1987A en la Gran Nube de Magallanes, observada unas horas después de su explosión, fue la primera oportunidad de poner a prueba a través de las observaciones directas las teorías modernas sobre la formación de las supernovas. – Cassiopeia A – Supernova en Casiopea, no observada en la Tierra, pero se estima que explotó hace unos 300 años. Es el remanente más luminoso en la banda de radio. 2005 - SN 2005ap - Esta supernova de tipo II es por el momento la más brillante jamas observada. Llegó a ser hasta ocho veces más brillante que la vía láctea. Esto la hace superar en casi dos veces a SN 2006gy. 2006 – SN 2006gy en el núcleo de la galaxia NGC 1260, es la segunda más grande que se ha podido observar hasta la fecha, cinco veces más luminosa que las supernovas observadas anteriormente, su resplandor fue de 50.000 millones de veces la del Sol. Se originó por la explosión de una estrella de 150 masas solares. Galileo usó la supernova 1604 como una prueba contra el dogma aristotélico imperante en esa época, de que el cielo era inmutable. Las supernovas dejan un remanente estelar tras de sí; el estudio de estos objetos ayuda mucho a ampliar los conocimientos sobre los mecanismos que las producen. [editar]El papel de las supernovas en la evolución estelar Las supernovas contribuyen a enriquecer el medio interestelar con metales (para los astrónomos, «metal» es todo elemento más pesado que el helio). Así, tras cada generación de estrellas (y, consecuentemente, de supernovas), la proporción de elementos pesados del medio interestelar aumenta. Mayores abundancias en metales tienen importantes efectos sobre la evolución estelar. Además, sólo los sistemas estelares con metalicidad lo suficientemente alta pueden llegar a desarrollar planetas. Una mayor metalicidad conlleva pues una mayor probabilidad de formación de planetas, pero también contribuye a formar estrellas de menor masa. Esto es debido a que el gas acretado por la protoestrella es más sensible a los efectos del viento estelar cuanto más elementos pesados posea, pues éstos absorben mejor los fotones. Alex Filippenko y sus colaboradores postulan que las mayores supernovas (como la SN 2005ap y la SN 2006gy) habrían sido producidas por estrellas muy masivas (de 100 o más masas solares, en los casos citados 150 masas solares), y que estrellas de esas características habrían constituido la primera generación de estrellas en el universo; al estallar como gigantescas supernovas habrían difundido en el universo los elementos químicos a partir de los cuales se generaron las nuevas estrellas (y astros en general). Tales elementos químicos serían en definitiva los que constituyen a cada ente material conocido, incluidos los seres humanos. [editar]Bibliografía Enrique Paillas. [editar]Referencias ↑ W. Landsman, T. Simon, P. Bergeron (1999). «The hot white-dwarf companions of HR 1608, HR 8210, and HD 15638». Astronomical Society of the Pacific 105 (690): pp. 841–847. ↑ Samuel, Eugenie (23 de mayo de 2002). «Supernova poised to go off near Earth». New Scientist. Consultado el 12-01-2007. ↑ S. Y. Tzekova et al (2004). «IK Pegasi (HR 8210)». ESO. Consultado el 12-01-2007. [editar]Véase también Hipernova Erupción de rayos gamma Expansión acelerada del universo Lista de restos de supernova [editar]Enlaces externos [editar]Español Las Supernovas en AstroMía Las supernovas. Windows to the Universe. Imágenes de supernovas Supernova: cuando las estrellas explotan Novas y supernovas [editar]Inglés Las supernovas producen rayos cósmicos Lista de supernovas recientes El proyecto SNEWS (SuperNova Early Warning System) utiliza detectores de neutrinos para construir una red que, según se espera, proveerá noticias de avanzada ante una explosión de supernova. Un artículo de revisión en SNEWS Un artículo técnico de revisión sobre supernovas Tipo Ia. Un artículo de Science sobre el mecanismo de la explosión de las supernova Tipo Ia. Otra buena revisión de eventos relacionados con supernovas. Un artículo sobre la conexión entre supernovas y neutrinos (en inglés). Categorías: Tipos de estrellas | Supernovas | Fenómenos astronómicos | Plasma espacial Registrarse/Entrar Artículo Discusión Leer Editar Ver historial Portada Portal de la comunidad Actualidad Cambios recientes Páginas nuevas Página aleatoria Ayuda Donaciones Notificar un error Imprimir/exportar Crear un libro Descargar como PDF Versión para imprimir Herramientas En otros idiomas Afrikaans العربية Azərbaycanca Беларуская Български বাংলা Bosanski Català Česky Dansk Deutsch Ελληνικά English Esperanto Eesti Euskara فارسی Suomi Français Frysk Gaeilge Galego עברית Hrvatski Kreyòl ayisyen Magyar Interlingua Bahasa Indonesia Íslenska Italiano 日本語 Basa Jawa ქართული 한국어 Latina Lëtzebuergesch Lietuvių Latviešu Македонски മലയാളം Bahasa Melayu Malti မြန်မာဘာသာ Nederlands ‪Norsk (nynorsk)‬ ‪Norsk (bokmål)‬ Polski Português Română Русский Sicilianu Srpskohrvatski / Српскохрватски Simple English Slovenčina Slovenščina Српски / Srpski Basa Sunda Svenska தமிழ் ไทย Türkçe Українська اردو Tiếng Việt 中文 粵語 Esta página fue modificada por última vez el 5 feb 2011, a las 23:23. El texto está disponible bajo la Licencia Creative Commons Atribución Compartir Igual 3.0; podrían ser aplicables cláusulas adicionales. Lee los términos de uso para más información. Política de privacidadAcerca de WikipediaDescargo de responsabilidad
 
Reloj(la hora)
 
el universo
 
sabras el universo en esta pagina
el mar y sus cosas
 
te imaginas saber la vida bajo el mar
la vida en la tierra
 
Es increible
historias antiguas
 
vas ha saber mas
 
Hoy habia 26 visitantes (29 clics a subpáginas) ¡Aqui en esta página!
les gusta Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis